3.1339 \(\int \frac{\sqrt{a+b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt{\cos (c+d x)}} \, dx\)

Optimal. Leaf size=346 \[ \frac{(8 a A+3 a C+4 b B) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (a^2 (-C)+4 a b B+8 A b^2+4 b^2 C\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{(a C+4 b B) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 b d \sqrt{\cos (c+d x)}}-\frac{(a C+4 b B) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{C \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{2 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

((8*a*A + 4*b*B + 3*a*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*d*Sqrt[C
os[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((8*A*b^2 + 4*a*b*B - a^2*C + 4*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/(a +
 b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(4*b*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - ((4*b*B
+ a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*b*d*Sqrt[(b + a*C
os[c + d*x])/(a + b)]) + (C*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)) + ((4*b*B + a*C)*S
qrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*b*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.32705, antiderivative size = 346, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 14, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.311, Rules used = {4265, 4096, 4102, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{\left (a^2 (-C)+4 a b B+8 A b^2+4 b^2 C\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{(8 a A+3 a C+4 b B) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{(a C+4 b B) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 b d \sqrt{\cos (c+d x)}}-\frac{(a C+4 b B) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{C \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{2 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

((8*a*A + 4*b*B + 3*a*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*d*Sqrt[C
os[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((8*A*b^2 + 4*a*b*B - a^2*C + 4*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/(a +
 b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(4*b*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - ((4*b*B
+ a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*b*d*Sqrt[(b + a*C
os[c + d*x])/(a + b)]) + (C*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)) + ((4*b*B + a*C)*S
qrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*b*d*Sqrt[Cos[c + d*x]])

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 4096

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d
*Csc[e + f*x])^n)/(f*(m + n + 1)), x] + Dist[1/(m + n + 1), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^
n*Simp[a*A*(m + n + 1) + a*C*n + ((A*b + a*B)*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) + a*C
*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] &&
!LeQ[n, -1]

Rule 4102

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1)*(d*Csc[e + f*x])^(n - 1))/(b*f*(m + n + 1)), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a*C
*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{1}{2} \left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{1}{2} a (4 A+C)+(2 A b+2 a B+b C) \sec (c+d x)+\frac{1}{2} (4 b B+a C) \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B+a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt{\cos (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{1}{4} a (4 b B+a C)+\frac{1}{2} a b (4 A+C) \sec (c+d x)+\frac{1}{4} \left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{2 b}\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B+a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt{\cos (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{1}{4} a (4 b B+a C)+\frac{1}{2} a b (4 A+C) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{2 b}+\frac{\left (\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{8 b}\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B+a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt{\cos (c+d x)}}+\frac{\left ((-4 b B-a C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{8 b}+\frac{1}{8} \left ((8 a A+4 b B+3 a C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{\left (\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{8 b \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}\\ &=\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B+a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt{\cos (c+d x)}}+\frac{\left ((8 a A+4 b B+3 a C) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{8 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{8 b \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left ((-4 b B-a C) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{8 b \sqrt{b+a \cos (c+d x)}}\\ &=\frac{\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B+a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt{\cos (c+d x)}}+\frac{\left ((8 a A+4 b B+3 a C) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left ((-4 b B-a C) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{8 b \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}\\ &=\frac{(8 a A+4 b B+3 a C) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (8 A b^2+4 a b B-a^2 C+4 b^2 C\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 b d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{(4 b B+a C) \sqrt{\cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{4 b d \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}+\frac{C \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{(4 b B+a C) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 b d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 33.4586, size = 100266, normalized size = 289.79 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.51, size = 1579, normalized size = 4.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x)

[Out]

1/4/d*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))^3*(-4*B*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*sin(d*x+c)*a*b*(1/(cos(d*x+c)+
1))^(3/2)-C*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^2*(1/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)-2*C*((a-b)/(a+b))^(1/2)*c
os(d*x+c)^2*a*b*(1/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)-4*B*((a-b)/(a+b))^(1/2)*cos(d*x+c)*sin(d*x+c)*b^2*(1/(cos(
d*x+c)+1))^(3/2)-3*C*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a*b*(1/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)-2*C*sin(d*x+c)*((a
-b)/(a+b))^(1/2)*cos(d*x+c)*b^2*(1/(cos(d*x+c)+1))^(3/2)-2*C*sin(d*x+c)*((a-b)/(a+b))^(1/2)*(1/(cos(d*x+c)+1))
^(3/2)*b^2+8*A*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b-8*A*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2
)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2+16*A*cos(d*x+c)^2*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-
b),I/((a-b)/(a+b))^(1/2))*b^2-4*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((
a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*a*b+4*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*b^2+8*B*
cos(d*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/si
n(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a*b-C*cos(d*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2+C*cos(d*x+c)^2*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(
1/2))*a*b+2*C*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2+2*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)
^2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b-4*C*cos(d*x+c)^2*Ellipti
cF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*b^2-2*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2*EllipticPi((-1+cos(d*x+c))*((a-
b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a^2+8*C*cos(d*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/
2))*b^2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/b/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/(1/(cos(d*x+c)+1))^(3/2)/s
in(d*x+c)^6/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b \sec{\left (c + d x \right )}} \left (A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sqrt{\cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)